Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Engineering Gac/Rsm Signaling Cascade for Optogenetic Induction of the Pathogenicity Switch in Pseudomonas aeruginosa.

blue YtvA P. aeruginosa P. aeruginosa Signaling cascade control
ACS Synth Biol, 2 Jun 2021 DOI: 10.1021/acssynbio.1c00075 Link to full text
Abstract: Bacterial pathogens operate by tightly controlling the pathogenicity to facilitate invasion and survival in host. While small molecule inducers can be designed to modulate pathogenicity to perform studies of pathogen-host interaction, these approaches, due to the diffusion property of chemicals, may have unintended, or pleiotropic effects that can impose limitations on their use. By contrast, light provides superior spatial and temporal resolution. Here, using optogenetics we reengineered GacS of the opportunistic pathogen Pseudomonas aeruginosa, signal transduction protein of the global regulatory Gac/Rsm cascade which is of central importance for the regulation of infection factors. The resultant protein (termed YGS24) displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in the Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of the Pseudomonas aeruginosa strain PAO1 in a brain-heart infusion and of another strain, PA14, in slow killing media progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined hosts, even specific tissues, to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.
2.

Optogenetical control of infection signaling cascade of bacteria by an engineered light-responsive protein.

blue YtvA P. aeruginosa P. aeruginosa
bioRxiv, 29 Oct 2020 DOI: 10.1101/2020.10.28.358515 Link to full text
Abstract: Bacterial pathogens operate by tightly controlling the virulence to facilitate invasion and survival in host. Although pathways regulating virulence have been defined in detail and signals modulating these processes are gradually understood, a lack of controlling infection signaling cascades of pathogens when and whereabouts specificity limits deeper investigating of host-pathogen interactions. Here, we employed optogenetics to reengineer the GacS of Pseudomonas aeruginosa, sensor kinase of GacS/GacA TCS regulates the expression of virulence factors by directly mediating several sRNAs. The resultant protein YGS24 displayed significant light-dependent activity of GacS kinases in Pseudomonas aeruginosa. When introduced in Caenorhabditis elegans host systems, YGS24 stimulated the pathogenicity of PAO1 in BHI and of PA14 in SK medium progressively upon blue-light exposure. This optogenetic system provides an accessible way to spatiotemporally control bacterial pathogenicity in defined host even specific tissues to develop new pathogenesis systems, which may in turn expedite development of innovative therapeutics.
Submit a new publication to our database